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Abstract

We recall the basics of discrete orthogonal wavelet bases and show how a fast algorithm
for the transform of n-dimensional data can be constructed and implemented on dis-
tributed memory machines. For this purpose, we use a ‘slice’ representation of data
across processors and restrict to the case of a power-of-two number of processors for
simplicity. Some examples of the transform and filtering of two- and three-dimensional
data are given. It is found that our parallel data-model leads to a satisfactory scalability
of the algorithm.
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1 Introduction

Wavelet analysis has proven useful in applications as different as image compression (e.g.
Mallat, 1989) and meteorology (e.g. Torrence & Compo, 1998), to name but two exam-
ples. For nearly a decade, wavelet-based techniques have also been applied to various
problems in fluid mechanics, either for (turbulent) data analysis (Meneveau, 1991; Do-
Khac, Basdevant, Perrier & Dang-Tran, 1994; Brasseur & Wang, 1992; Froehlich, 2000),
data compression (Farge, Schneider & Kevlahan, 1998) or with the purpose of construct-
ing numerical methods (e.g Fröhlich & Schneider, 1994). Our present motivation is of
the first type. Within a turbulent flow, we wish to detect certain events which are asso-
ciated to some length scale and appear localized in space (Klein, 1998). These are quite
exactly the features which make wavelet functions so attractive: they offer a compromise
between Fourier analysis and physical space analysis allowing for a scale-wise study of
the signal at different points in space.

The present report is intended to document our method of analysis in detail. For
a general introduction to the theory of wavelets – from a mathematical point of view
– the reader is referred to the classical monographs by Meyer (1992) and Daubechies
(1992). Here we have chosen to work with orthonormal bases of discrete wavelets. The
main reason is the fact that the data volume is kept constant under these circumstances,
which is very desirable in view of the large number of degrees of freedom of the tur-
bulent flow fields (Meneveau, 1991). Moreover, the orthogonality and completeness of
the basis allows us to perform filtering operations in wavelet space ensuring that the
back-transformed field remains smooth. What is sometimes stated as a disadvantage of
the discrete transform is the real-valued nature of the wavelet functions (and therefore of
the coefficients) which leads to small-scale oscillations of the ensueing coefficients (Do-
Khac et al., 1994). On the other hand, it should be pointed out that the study of the
modulus of complex wavelet coefficients (obtained via continuous transform) suppresses
information about the sign of the signal.

The organization of this document is as follows. Section 2 introduces the discrete
wavelet transform particularly for n-dimensional periodic data and using spline wavelets.
In §3 we describe how the fast tranform algorithm can be implemented on a distributed
memory machine. Section 4 finally shows some examples of two- and three-dimensional
transforms as well as measures of performance of the parallel data-model.

2 The discrete orthogonal wavelet decomposition

2.1 Basics

We wish to construct an orthonormal basis of the space of square integrable functions,
consisting of translations and dilations of essentially one “mother” function in order to
enable us to analyze a given function f(x) ∈ L2(R) ≡ V with respect to space and scale.
According to the theory of multi-resolution analysis (MRA, Mallat, 1989), we will work
with two orthogonal functions:
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(i) the scaling function φ, acting as a low-pass filter or averaging function, where∫ +∞

−∞

φ(x)dx = 1 (1)

holds;

(ii) the basic wavelet ψ, which is a band-pass filter or a “detail” function with a mean
value of zero, ∫ +∞

−∞

ψ(x)dx = 0 . (2)

We define the dyadic dilation (by a factor of 2−j) and the translation (by s) of a function
g(x) as follows:

gj,s(x) = 2j/2 · g(2j x− s) . (3)

Then, the necessary orthogonality conditions can be expressed as:

< φj,s, φk,r > = δsr , (4a)

< ψj,s, ψk,r > = δsr δjk , (4b)

< ψj,s, ψj,r > = 0 , (4c)

where < a, b >=
∫ +∞

−∞
abdx.

The orthogonal basis is constructed from both, φ and ψ, which leads to the following
decomposition of our to-be-analyzed function:

f(x) =
∑
s∈Z

cj′,s φj′,s(x) +
∑
j≥j′

∑
s∈Z

dj,s ψj,s(x) , (5)

where the coefficients are obtained from the inner products

cj′,s =

∫ +∞

−∞

f(x)φj′,s(x)dx , dj,s =

∫ +∞

−∞

f(x)ψj,s(x)dx . (6)

The coefficients cj′,s represent a “smooth” approximation of f(x) up to the scale 2−j
′

(where, in general, j′=0 so that it corresponds to the largest scale) and the second sum
in (5) adds up details at all smaller scales. Implicitly stated by equation (5) is the fact
that the complete wavelet basis consists of the space V ′j spanned by discrete translations
of the averaging function at scale j′ and the sum of all subspaces Wj which are spanned
by translations of the wavelet functions at the respective scales j ≥ j′.

2.2 Periodic wavelet basis

For use with periodic functions with a period of 1, the bases of the MRA take the following
form (Perrier & Basdevant, 1989):

φjs(x) =
∑
z∈Z

φj,s(x+ z)

ψjs(x) =
∑
z∈Z

ψj,s(x+ z)

j ≥ 0 , 0 ≤ s ≤ 2j . (7)
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The decomposition becomes:

f(x) = c0
0 +

∑
j≥0

∑
0≤s<2j

djs ψ
j
s(x) , (8)

with

c0
0 =

∫ 1

0

f(x)dx , djs =

∫ 1

0

f(x)ψjs(x)dx . (9)

An important property is the conservation of energy during the transform, i.e.∫ 1

0

|f(x)|2dx = |c0
0|

2 +
∑
j≥0

2j−1∑
s=0

|djs|
2 . (10)

2.3 Multi-dimensional wavelet basis

In order to perform a multi-dimensional MRA, we will use tensor products of one-
dimensional wavelet bases. In n = 3 (2) dimensions there need to be Q(n) = 7 (3)
orthogonal subspaces Wq,j per scale which together with the subspace Vj make up a com-
plete basis (Mallat, 1989; Meneveau, 1991). Actually, the number Q can be understood
as the number of coordinate directions and possible diagonals that can be defined in the
n-dimensional space (i.e. in three dimensions there are three coordinates, one diagonal
and its three projections upon the different planes). The n-dimensional decomposition
reads:

f(x) = c0
0,... +

∑
j≥0

Q(n)∑
q=1

2j−1∑
s,...=0

dq,js,... ψ
q,j
s,...(x) , (11)

where

dq,js,... =

∫ 1

0

f(x)ψq,js,...(x)dx . (12)

As an example, the basic averaging and wavelet functions are below given in the two-
dimensional case:

φjs,l(x, y) = φjs(x) · φjl (y) → subspace Vj (13a)

ψ1,j
s,l (x, y) = φjs(x) · ψjl (y) → W1,j (13b)

ψ2,j
s,l (x, y) = ψjs(x) · φjl (y) → W2,j (13c)

ψ3,j
s,l (x, y) = ψjs(x) · ψjl (y) → W3,j , (13d)

where ψ1,j
s,l selects details in the horizontal direction, ψ2,j

s,l along the vertical and ψ3,j
s,l along

the diagonal.

2.4 Interpolation step

In practice, the signal to be analyzed will be available in discrete form rather than
analytically. We suppose a regular grid of dimension 2nJ where functional values f [i] are
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known (i being the n-dimensional vector of indices to the grid nodes). The very first
thing to do in our MRA is to determine an approximation f̃ which belongs to the space
VJ , i.e. the space in which work is done at the finest level of the hierarchy. Following
Perrier & Basdevant (1989), f̃ is obtained by filtering the data f [i] with a function LJ
given by

L̂J(k) =
1

2J
Ŝ(k)

φ̂J0 (k)
0 ≤ k < 2J , (14)

where S is the cardinal Lagrange function which verifies

S
(m

2J

)
= δ0,m m = 0 . . . 2J − 1 , (15)

and the Fourier coefficients are defined as

ĝ(k) =

∫ 1

0

g(x) e−2iπkx dx , k ∈ Z , (16)

with the restitution formula
g(x) =

∑
k∈Z

ĝ(k) e2iπkx . (17)

As remarked by Do-Khac et al. (1994), the filter LJ is nearly a Dirac filter and often not
applied in practice, which, however, can lead to misinterpretations of the smallest scales
of the transform. More specifically, the interpolation by LJ assures that the final de-
composition (e.g. equ. (11)) will be an interpolation function with respect to the discrete
values f [i]. In the present work, we do perform the interpolation step consistently.

2.5 Mallat’s fast algorithm: Quadrature mirror filters

The fast transform between physical and wavelet space relies upon an efficient evaluation
of the required scalar products. Coefficients at a given scale are recursively determined by
convolution of previous coefficients with either one of two quadrature mirror filters (QMF)
H or G and subsequent down-sampling by a factor of two, e.g. in the one-dimensional
case:

cj−1
k =

2j−1∑
s=0

cjs ·Hj(s− 2k)

dj−1
k =

2j−1∑
s=0

djs ·Gj(s− 2k)

0 ≤ k < 2j−1 . (18)

Due to the properties of the MRA, the filters are directly linked to the basic averaging
and wavelet functions. In the periodic case, these relations read (Perrier & Basdevant,
1989):

Ĥj(k) =

√
2

2j
φ̂(2k/2j)

φ̂(k/2j)
, Ĝj(k) =

√
2

2j
ψ̂(2k/2j)

φ̂(k/2j)
. (19)

The sequence of operations, consisting of convolutions and down-sampling, is schemat-
ically illustrated in figure 1. At each level j, an array of 2n(j+1) coefficients cj+1 is
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∗G(x)
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∗G(y)

∗H(y)
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∗H(z)
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∗H(z)

∗G(z)

∗H(z)

∗G(z)

y ↓ 2x ↓ 2

cj

d1,j

d2,j

d3,j

d4,j

d5,j
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Figure 1: Schematic of the jth step of Mallat’s fast algorithm for wavelet decomposition
of an n=3 dimensional data field; ‘∗’ represents the convolution operator, ‘xi ↓ 2’ signifies
down-sampling by a factor of two in the direction xi. c

j is an array of dimension 23j cor-
responding to the “smooth” content of the data in space Vj and the equally dimensioned
arrays dq,j, where 1 ≤ q ≤ 7, hold the “detail” information of the signal at the current
scale j and respective direction q. Supplementary symbols in the lower part of the figure
indicate the occurrence of operations which pertain to the execution on distributed mem-
ory machines (cf. §3.1 and 3.3): ⇐, transpose from ‘z-cut’ to ‘y-cut’ representation of
data;⇒, inverse transpose; ⇑, up-sizing the number of active processors; ⇓, down-sizing.
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processed, thereby producing an array of 2nj new coefficients cj (for further use in the
following step) and a number of Q arrays of wavelet coefficients dq,j each of the same size
2nj. Therefore, the full transform of 2nJ discrete data values leads to 1+Q

∑J−1
j=0 2nj =2nJ

wavelet coefficients.

The inverse transform (“wavelet synthesis”) proceeds in opposite direction along the
same schematic with the following modifications (e.g. Farge, 1992, p. 418): (i) replacing
convolutions with de-convolutions; (ii) performing up-sampling instead of down-sampling;
(iii) wherever two “paths” join in figure 1, the signal is added and multiplied by a factor
of 2.

2.6 Processing in Fourier space: Non-compact filters

Selecting a type of wavelet means, for instance, to chose an appropriate filter H(x) and
to determine the corresponding complement filter via G(l) = (−1)1−lH(1−l). The choice
is based upon criteria concerning fundamental properties of wavelets (Farge, 1992):

(i) Regularity. The analyzing wavelet should be localized (i.e. should have low intensity
outside a “small” region) in physical and Fourier space. By this virtue, a signal
can be analyzed in space and scale simultaneously.

(ii) Cancellations. In order for the analysis to pick up high-order fluctuations of the
signal reliably, the analyzing wavelet should possess a corresponding number of
vanishing high-order moments.

Cubic spline wavelets have been widely used for the analysis of turbulent flow fields (e.g.
Meneveau, 1991; Do-Khac et al., 1994) offering a reasonable compromise with respect
to localization and smoothness (4 vanishing moments). Since the associated filters are
not compactly supported, it is in this case advantageous to work in Fourier space using
FFT’s. For the present study, we have chosen such cubic spline functions as our analyzing
functions. The expressions for computing the filters H , G, L are given in appendix A.
The reader is referred to Fröhlich & Schneider (1994) who give a detailed account of the
decomposition algorithm including the down/up-sampling step in Fourier space (cf. their
§5.1).

3 Parallel algorithm for three-dimensional discrete wavelet decomposition

When dealing with large, three-dimensional data sets, the operation count for the discrete
wavelet transform (DWT) – which scales as O(N3 log(N)) – can become unacceptable.
An even more serious problem is the required core memory which easily exceeds cur-
rent possibilities. Therefore, we distribute the work load across various processors of a
distributed memory machine and handle communication via MPI.

Different algorithms for parallelizing the DWT have been proposed in the literature
(e.g. Møller Nielsen, 1998; Yang & Misra, 1998)1 . Those authors are concerned with

1Our literature research is admittedly far from being exhaustive.
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...
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1 • ◦ ◦ ◦ • ◦ ◦ ◦
0 • ◦ ◦ ◦ ◦ ◦ ◦ ◦

voice j

Figure 2: (a) The ‘slice’ data-model consisting of complete planes resident in local mem-
ory and therefore requiring one pair of transpose operations for performing ‘global’ op-
erations (such as fast Fourier transforms) in all three directions. (b) The hierarchy of
‘active’ processors (indicated by full symbols) during the coarsest levels of Mallat’s algo-
rithm. The scheme shows an example with 8 available processors; N=2J is the problem
size and ip is the global identification of each processor.

compact filters which lead to very different algorithms since almost local operations are
performed on the data. Compactly supported wavelets, however, are in general not
symmetric which reduces their usefulness for flow analysis. This is one of the reasons
why we chose non-compact spline wavelets instead.

The algorithm exposed in the following is especially adapted for the use of long filters
and “global” operations like fast Fourier transforms. It uses a “slice” data model as is
commonly used in spectral codes for fluid mechanics. We should stress that our main
concern in designing the parallelization was memory and not necessarily execution speed
because we intend to use wavelets as tools for analysis and not for the construction of
simulation methods.

In order to simplify data dependencies during the dyadic algorithm, we make the
important assumption that the number of active processors is a power of two: nP = 2P .

3.1 The ‘slice’ model for data in physical or Fourier space

Three-dimensional data arrays will be stored across different processors by partitioning
either along the z-coordinate or along the y-coordinate (figure 2 a) in different parts of
the code. Complete (x, y)- or (x, z)-planes are therefore resident in memory which allows
to perform full vector operations in both those directions without data exchange (cf.
table 1 for the dimensions of distributed arrays in physical and Fourier space).

As we have seen in §2, the three elementary operations of the transform are:

(i) FFT;

(ii) down/up-sampling;

(iii) convolution.
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local dimension
type global dimension z-cut y-cut

real (nx + 2, ny, nz) (nx + 2, ny,
nz
np

) (nx + 2,
ny
np
, nz)

complex (0 : nx/2, 0 : ny−1, 0 : nz−1) (0 : nx/2, 0 : ny−1,
nz
np

) (0 : nx/2,
ny

np
, 0 : nz−1)

Table 1: The dimensions of three-dimensional data arrays distributed over a number of
np processors in either ‘z-cut’ or ‘y-cut’ representation. Note that the actual data has
dimension real(nxnynz) in physical space and additional “odd-ball” indices are due to
the real-to-complex Fourier transform. Also, it should be mentioned that the dimen-
sions should be considered variable since, due to down/up-sampling, the lengths vary
continuously during the algorithm, i.e. 1 ≤ nx, ny, nz ≤ 2J−1. Therefore, data sizes and
distribution across processors (which also vary in number, np 6= nP in general) must be
recalculated at various stages.

All three operations (i)-(iii) are factorized into individual spatial directions. Points (i) and
(ii) require non-local data-access. Therefore, the data base has to be transposed and back-
transposed once per step j in order to switch between ‘z-cut’ and ‘y-cut’ representation.
The occurrence of the transpose is indicated by horizontal arrows in the schematic of the
algorithm shown in figure 1.

The parallel algorithm adds basically two features to the above list of operations:

(iv) transpose of distributed data;

(v) resize: decrease/increase the number of active processors.

The technique for performing (iv) will be explained in §3.2 below. The feature (v) is
necessary because with any initial number of active processors nP > 1, and supposing
that the decomposition is carried out for all voices j = 0 . . . J − 1, the algorithm will
reach a point where the data size in one direction is smaller than nP . In those instances,
a redistribution of data and a de-activation of a subset of processors will be carried out
before continuing the computation. This point will be discussed in §3.3. Finally, in §3.4
we will present the way wavelet coefficients are stored in distributed fashion and how
they can be accessed.

3.2 Transpose of the distributed data base

Transposing a distributed array A, dimensioned as in table 1, from ‘y-cut’ to ‘z-cut’
representation is carried out via the following scheme:

for ip = 0 to np do
if ip is active then

if ip 6= myid then
• send A(:, jbeg(myid) : jend(myid), kbeg(ip) : kend(ip)) to processor ip
• receive from ip into work(:)
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else
work(:)← A(:, jbeg(myid) : jend(myid), kbeg(myid) : kend(myid)){locally}

end if
A(:, jbeg(ip) : jend(ip), kbeg(myid) : kend(myid))← work

end if
end for

where 0 ≤ myid ≤ nP −1 is the identification attributed to a processor; jbeg, jend,
kbeg, kend are the pointers indicating the range of global indices which are held by
each processor in ‘y-cut’ and ‘z-cut’ representation respectively. The inverse transpose
operation proceeds in analog fashion.

Three-dimensional Fourier transforms are performed separately along each spatial
direction at the additional cost of a pair of transpose operations before and after treating
the z-direction.

3.3 Resize: Changing the number of active processors

Whenever the data length of the current scale drops below the number of currently
active processors, i.e. 2j−1 < np, the latter needs to be reduced. One possibility – and
probably the simplest algorithmically – is to switch directly to single-processor mode at
this point. However, it means to leave (nP−1)/nP of the ressources idle for the remainder
of the decomposition. With a reasonable amount of extra coding effort, half of the active
processors can be carried along at each successive step.

Since the algorithm is dyadic, np will also be resized by a factor of two each time
until – in the last step – only one processor remains active. This sequence, where at each
down-sizing step one active processor out of two is de-activated, is depicted in figure
2 (b). The inverse operation of up-sizing during the inverse wavelet transform proceeds
in reverse order along the same diagram.

The important part of resizing is the data exchange between ‘survivors’ (‘veterans’)
and newly de-activated (re-activated) processors. During down-sizing, de-activating pro-
cessors means making them send the coefficients cj – needed for carrying on with the
decomposition – to their ‘surviving’, lower-indexed neighbour. Analogously, processors
which are re-activated during up-sizing receive half of the coefficients cj from their inferior
‘veteran’ neighbours.

Resizing is always carried out when data is arranged in ‘z-cut’ representation (cf.
figure 1 for the occurence during the algorithm) which allows exchanged data blocks to
be sent/received in-place and no intermediate storage is necessary. The following pseudo-
code shows how this communication can be handled:

if receiving(myid) = true then
if down-sizing then
n← (nx/2 + 1)ny(kend(myid)− kbeg(myid) + 1)
nl← n+ 1

else if up-sizing then
n← (nx/2 + 1)ny(kend(irecv)− kbeg(irecv) + 1)

12



nl← 1
end if
• receive n coefficients from irecv starting with local address nl

else if sending(myid) = true then
if down-sizing then
n← (nx/2 + 1)ny(kend(myid)− kbeg(myid) + 1)
nl← 1

else if up-sizing then
n← (nx/2 + 1)ny(kend(myid)− kbeg(myid) + 1)/2
nl← n+ 1

end if
• send n coefficients to isend starting with local address nl

end if

Here, the pointers irecv and isend refer to indices of the pair of processors which is
mutually exchanging data and has been set according to the tree-structure indicated in
figure 2 (b). Note that the indices and buffer sizes correspond to data in Fourier space,
i.e. of complex type (cf. table 1).

3.4 Distributed storage of wavelet coefficients

Due to the fact that different processors participate in the computation of a different
number of levels of the dyadic decomposition, the number of wavelet coefficients dq,js,l,k
generated by each one of them varies. This memory unbalancing was of some concern
when laying out the present method and it was initially planned to equilibrate the use
of resources by additional data exchange at the end of each step. As we will see in the
following, however, the actual difference is quite small and we content ourselves with a
slight over-dimensioning of the arrays.

The overall data-volume produced by a single processor is given by the following
formula:

Nip = 7 ·
J−1∑
j=j1

23j

nP︸ ︷︷ ︸
N1

+ 7 ·
j1−1∑
j=j2

22j

︸ ︷︷ ︸
N2(j2)

, (20)

where N1 is the data-volume accumulated by all processors before the first down-sizing
which occurs at j= j1 =P and N2 is the remainder up to the last voice j2 at which the
respective processor remains active. This value j2 varies from processor to processor in
the range 0 ≤ j2 ≤ j1. The maximum difference in data volume is given by N2(j2 =0)+1
which only depends on the number of processors nP and not on the actual problem size:

N2(j2 =0) =
(
n2
p − 1

)
·

7

3
. (21)

Accordingly, the data unbalancing in a case of nP =128 processors consists of only 5462
real elements (corresponding to 21848 Byte in a 32 bit representation). This disadvantage
seems acceptable. We therefore need to allocate the following size for the buffers which
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accommodate the transform:

NDWT = N1 +N2(j2 =0) + 1 =
23J

nP
+

4n2
P − 7

3
+ 1 . (22)

In the present scheme, coefficients are stored sequentially, voice by voice, and looping
over the directional index ‘q’. For a given set of indices {s, l, k, q, j}, the processor
identification and the local index of the corresponding coefficient dq,js,l,k can be determined
by the following procedure:

Require: s, l, k, q, j
nj ← 2j

nt ← max(0, P − j){the number of resizes so far}
np ← 2P−nt{the current number of active processors}
for ip = 0 to nP − 1 do

if mod (ip, nP/np) = 0 then
isactive(ip)← 1

else
isactive(ip)← 0

end if
end for
if isactive(myid) = 1 then

for i = 0 to myid do
ninf ← ninf + isactive(i){number of active procs with inferior address}

end for
kf ← (ninf − 1)(nj/np) + 1{first z-index held locally}
kl ← ninf(nj/np){last z-index held locally}
if k ≥ kf and k ≤ kl then

if nt > 0 then
nsum ← 23J/nP − n2

P + 7 (n2
P − 2j+1) /3

else
nsum ←

(
23J/nP − 23(j+1)

)
/nP

end if
index← nsum + (q − 1) (kl − kf + 1)njnj + (k − kf)njnj + (l − 1)nj + s
⇒ processor myid holds coefficient dq,js,l,k at local position index
• broadcast the value of myid and index to global variables ipholds and index

end if
end if

The retrieval of the actual value of the coefficient will then be performed by a request to
processor ipholds at address index.

4 Some results

In this section we present some results from wavelet transforms of two-dimensional and
three-dimensional data as well as measures of the performance of our parallel algorithm.
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4.1 Two-dimensional DWT

Figure 3 shows the transform of an image showing a fingerprint from Bradley, Brislawn &
Hopper (1993)2. The wavelet coefficients are given in the usual scale-wise and direction-
wise representation, each block dq,j being separated by a solid line. By comparing the
coefficients with the original signal, it can be seen that the d1,j’s (upper left block) pick up
variations in the horizontal direction, d2,j’s (lower right block) react to vertical variations
and d3,j’s (upper right block) to diagonal variations. The data has then been truncated
in wavelet space, i.e. all coefficients with an intensity below a certain threshold have been
set to zero, and back-transformed to physical space. As is shown in the same figure, the
reconstruction with only 1.5% of the total number of coefficients gives a very reasonable
image (containing 98% of the “energy”). The trace map of the intense coefficients shows
that all scales contribute but in a spatially inhomogeneous way. This is one of the
reasons why wavelet compression is often more efficient than compression based upon
global approximations, e.g. cosine transforms.

Figure 4 gives a similar impression in the case of turbulent flow data. The two-
dimensional transform has been applied to instantaneous enstrophy values of a slice
through statistically homogeneous-isotropic flow obtained by direct numerical simulation
(DNS, cf. §4.2). It is evident – and representative of many snapshots – that at small
scales, high intensity coefficients appear in isolated regions, hinting at the intermittent
nature of turbulence.

4.2 Three-dimensional DWT

The data used in this section is taken from a large-scale forced simulation of homogeneous-
isotropic, turbulent flow at Reλ = 45 using a pseudo-spectral code with 1283 de-aliased
Fourier modes.

First, we have tested the compression capabilities of the spline base. Farge, Schneider
& Kevlahan (1998) have proposed a wavelet based technique for separating the flow field
into a coherent part and an incoherent background flow. The procedure is simply a
truncation of vorticity in wavelet space according to an “objective” threshold CT which
only depends upon the variance of the signal and the number of samples, viz.

cT = (2Z log10 (Nn))1/2 , (23)

where the total enstrophy is defined as

Z =
1

2

∫
Ω

|ω|2dx . (24)

Applying this criterion, approximately 99.8% of the wavelet coefficients are discarded
in the instantaneous flow fields of our simulation. Figure 5 shows an example of the
reconstruction, where 86% of enstrophy is carried by the remaining few coefficients. The

2(also contained in the MATLAB package WaveLab 802, available from www-stat.stanford.edu)
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figure shows that most of the regions of strong vorticity, i.e. the “worms”, are preserved
and can be identified by comparison with the full field.3

The energy spectral tensor has been defined by Meneveau (1991) as follows:

Eij(km) =
22(J−(j−1)) h

2π log(2)

7∑
q=1

2m∑
s,k,l=1

dq,ms,k,l(ui) · d
q,m
s,k,l(uj)

1

2N3
, (25)

where h is the discrete grid size and dq,ms,k,l(ui) are the wavelet coefficients of the transform
of the velocity component ui. The three-dimensional energy spectrum E(km) is then
simply the trace of (25). Figure 6 shows the wavelet spectrum for the flow field used
before in figure 5. It is obvious that the spacing of the wavenumbers is very coarse.
Furthermore, deviations from the usual radial Fourier spectrum are visible, due to the
non-locality of the basis functions in Fourier space. The use of the wavelet spectrum
– when averaged over the whole domain – is therefore limited. However, the fact that
local spectra can be studied is potentially useful for the analysis of inhomogeneous fields
(Do-Khac et al., 1994).

4.3 Performance of the parallel DWT

For realistic problem sizes, the memory requirements of the DWT decrease near linearly
with the number of processors, cf. (22). With this property, the algorithm fulfills our
most important initial specification. On the other hand, it is interesting to have a look
at the execution time using different numbers of processors.

We have used the following code structure for timing the transform:

c /* initialize MPI */

call MPI_INIT(ierr)

call MPI_COMM_RANK(MPI_COMM_WORLD,myid,ierr)

call MPI_COMM_SIZE(MPI_COMM_WORLD,numprocs,ierr)

c /* start timing */

t0=MPI_WTIME()

c /* do forward wavelet transform */

call dwt3dp(signal,+1)

t1=MPI_WTIME()

c /* backward DWT */

call dwt3dp(signal,-1)

t2=MPI_WTIME()

dt1=(t1-t0)

dt2=(t2-t1)

call MPI_REDUCE(dt1,dt1m,1,MPI_DOUBLE_PRECISION,

$ MPI_MAX,0,MPI_COMM_WORLD,ierr)

call MPI_REDUCE(dt2,dt2m,1,MPI_DOUBLE_PRECISION,

3A short animation of a sequence of 50 such fields at a temporal resolution of one Kolmogorov time
unit can be found under www.pik-potsdam.de/∼uhlmann/reports/homiso/compress.html in MPEG
format.
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$ MPI_MAX,0,MPI_COMM_WORLD,ierr)

if(myid.eq.0)write(*,*)’max: ’,dt1m+dt2m

c /* finalize mpi */

call MPI_FINALIZE(ierr)

The execution time is therefore the total elapsed time while performing a forward and a
backward wavelet transform.

Our tests have been carried out on an IBM SP2 with nodes at 66 MHz clock speed
and 128 MB core memory as well as a CRAY T3E LC 384 with DEC Alpha EV5.6 nodes
at 600MHz clock speed and 512 MB core memory. Figures 7 and 8 show the speed-up
and the parallel efficiency obtained when working on a field with dimension N = 128 and
N = 256, respectively. The algorithm is scaling reasonably well.

5 Conclusions

We have employed n-dimensional periodic wavelet bases as suggested by (Perrier & Bas-
devant, 1989; Meneveau, 1991; Do-Khac et al., 1994). We have devised and implemented
a fast algorithm on distributed memory machines using a ‘slice’ data model and restrict-
ing to a number of processors which is a power of two. This latter restriction is not
strictly mandatory but simplifies data dependencies. It would be straightforward to con-
struct the algorithm such that the transform works with an arbitrary number nP until
data becomes scarce for the first time (i.e. until 2j−1 < nP ) and then proceed with the
nearest inferior power of two (e.g. nP = 7, then continue with np = 4).

The present algorithm satisfies our intention of reducing local memory requirements
near linearly. Furthermore, execution time was seen to speed up very reasonably.

Source code written in FORTRAN and using MPI can be obtained from the author
upon request. Computing time (on the CRAY T3E system) provided by the computer
center at ZIB, Berlin, is gratefully acknowledged.
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Klein, R. 1998 Kleinskalige Instabilitäten als Bausteine der turbulenten Energiekaskade.
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A Filter functions associated with spline wavelets

It is convenient to assign the filters directly in Fourier space. Using spline functions of
order m, the expressions read (Perrier & Basdevant, 1989):

Ĥj(k) =
1

2j
H

(
kπ

2j

)
, where (26a)

H(x) =
√

2 cosm(x)

(
Pm−1

(
sin2(x)

)
Pm−1

(
sin2 (2x)

))1/2

, (26b)

Ĝj(k) =
1

2j
G

(
kπ

2j

)
, where (27a)

G(x) =
√

2e−2ix sinm(x)

(
Pm−1 (cos2(x))

Pm−1

(
sin2 (2x)

))1/2

, (27b)
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Figure 3: Wavelet transform of a 512× 512, 8 bit per pixel, gray-scale image showing a
fingerprint (taken from Bradley et al. 1993). In the upper left, the original data; upper
right, its reconstruction after keeping only the most intense 1.5% of the coefficients. The
lower left shows the wavelet coefficients, where small-scales are over-exposed for clarity.
In the lower right, the scale-wise and direction-wise distribution of the strongest 1.5%
of the coefficients kept in the reconstruction is shown. Scales j and directions q are
separated by solid lines. Note that these images (and the following) are reproduced on
paper in low resolution for practical purposes; high-resolution images are available online
under the URL www.pik-potsdam.de/∼uhlmann/reports/homiso/wavelets.html.
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Figure 4: Wavelet transform of a slice through a forced, 1283 modes DNS of homogeneous
isotropic turbulence at Reλ = 45. On the left, the original data. The image on the right
shows the intensity of the wavelet coefficients.

Figure 5: Isosurfaces of vorticity magnitude at |ω| = 4ω′ of homogeneous-isotropic flow
at Reλ = 45. The linear dimension of the visualized sub-domain corresponds to 225 Kol-
mogorov lengths. On the left, the full field; on the right, the field which is reconstructed
after high-pass filtering in wavelet space according to the threshold given in (23) where
99.2% of the coefficients are discarded.
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Figure 6: Three-dimensional energy spectrum of a snapshot of large-scale forced,
homogeneous-isotropic flow at Reλ = 45. •, wavelet spectrum; ◦, Fourier spectrum.

L̂J(k) =
1

23J/2
L

(
kπ

2J

)
, where (28a)

L(x) =
(Pm−1 (cos2(x)))

1/2

Pm/2−1 sin2 (x)
. (28b)

The coefficients of the spline polynomials Pm(x) =
∑m

i=0 a
m
i x

i can be obtained by the
following recursive formulas:

a1
0 = −2/3 , aj0 = 1 j = 1 . . .m ,

aji =
1

j(2j + 1)

(
(j − 1)(2j − 2i+ 1) aj−1

i − 2(j − i+ 1)2 aj−1
i−1

)
1 ≤ i ≤ m.

(29)
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Figure 7: Cumulated execution times of wavelet transform and inverse transform of a field
of dimension 1283: (a) relative speed-up S(np) = ∆t(1)/∆t(np); (b) parallel efficiency
E(np) = ∆t(1)/(∆t(np) · np). The solid line indicates ideal speed-up/efficiency. •, using
an IBM SP2 system with nodes at 66 MHz clock speed and 128 MB core memory; ◦,
CRAY T3E LC 384 with DEC Alpha EV5.6 nodes at 600MHz clock speed and 512 MB
core memory. Note that in ’•’ a 32 bit floating point representation is used, while ’◦’
uses a 64 bit representation. Therefore the individual work load is heavier in the latter
case.
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Figure 8: As figure 7 except that the problem size is 2563. Because of memory constraints,
only computations with nP > 1 are shown. The single execution time is approximated
as : t(1) = t(16) ∗ 16.
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